(中文) PIR传感器相关知识

How PIRs Work

PIR sensors are more complicated than many of the other sensors explained in these tutorials (like photocells, FSRs and tilt switches) because there are multiple variables that affect the sensors input and output. To begin explaining how a basic sensor works, we’ll use this rather nice diagram

The PIR sensor itself has two slots in it, each slot is made of a special material that is sensitive to IR. The lens used here is not really doing much and so we see that the two slots can ‘see’ out past some distance (basically the sensitivity of the sensor). When the sensor is idle, both slots detect the same amount of IR, the ambient amount radiated from the room or walls or outdoors. When a warm body like a human or animal passes by, it first intercepts one half of the PIR sensor, which causes a positive differential change between the two halves. When the warm body leaves the sensing area, the reverse happens, whereby the sensor generates a negative differential change. These change pulses are what is detected.

The PIR Sensor

The IR sensor itself is housed in a hermetically sealed metal can to improve noise/temperature/humidity immunity. There is a window made of IR-transmissive material (typically coated silicon since that is very easy to come by) that protects the sensing element. Behind the window are the two balanced sensors.

Image from RE200B datasheet

You can see above the diagram showing the element window, the two pieces of sensing material

Image from RE200B datasheet

This image shows the internal schematic. There is actually a JFET inside (a type of transistor) which is very low-noise and buffers the extremely high impedence of the sensors into something a low-cost chip (like the BIS0001) can sense.

Lenses

PIR sensors are rather generic and for the most part vary only in price and sensitivity. Most of the real magic happens with the optics. This is a pretty good idea for manufacturing: the PIR sensor and circuitry is fixed and costs a few dollars. The lens costs only a few cents and can change the breadth, range, sensing pattern, very easily.In the diagram up top, the lens is just a piece of plastic, but that means that the detection area is just two rectangles. Usually we’d like to have a detection area that is much larger. To do that, we use a simple lens such as those found in a camera: they condenses a large area (such as a landscape) into a small one (on film or a CCD sensor). For reasons that will be apparent soon, we would like to make the PIR lenses small and thin and moldable from cheap plastic, even though it may add distortion. For this reason the sensors are actually Fresnel lenses:

Image from Sensors Magazine

The Fresnel lens condenses light, providing a larger range of IR to the sensor.

Image from Cypress appnote 2105

OK, so now we have a much larger range. However, remember that we actually have two sensors, and more importantly we dont want two really big sensing-area rectangles, but rather a scattering of multiple small areas. So what we do is split up the lens into multiple section, each section of which is a fresnel lens.

Here you can see the multiple facet-sections

This macro shot shows the different Frenel lenses in each facet!

The different faceting and sub-lenses create a range of detection areas, interleaved with each other. Thats why the lens centers in the facets above are ‘inconsistant’ – every other one points to a different half of the PIR sensing element

Connecting to a PIR

Most PIR modules have a 3-pin connection at the side or bottom. The pinout may vary between modules so triple-check the pinout! It’s often silkscreened on right next to the connection (at least, ours is!) One pin will be ground, another will be signal and the final one will be power. Power is usually 3-5VDC input but may be as high as 12V. Sometimes larger modules don’t have direct output and instead just operate a relay in which case there is ground, power and the two switch connections.

The output of some relays may be ‘open collector’ – that means it requires a pullup resistor. If you’re not getting a variable output be sure to try attaching a 10K pullup between the signal and power pins.

An easy way of prototyping with PIR sensors is to connect it to a breadboard since the connection port is 0.1″ spacing. Some PIRs come with header on them already, the one’s from adafruit have a straight 3-pin header on them for connecting a cable

For our PIR’s the red cable is + voltage power, black cable is – ground power and yellow is the signal out. Just make sure you plug the cable in as shown above! If you get it backwards you won’t damage the PIR but it won’t work.

Testing a PIR

Now when the PIR detects motion, the output pin will go “high” to 3.3V and light up the LED!

Once you have the breadboard wired up, insert batteries and wait 30-60 seconds for the PIR to ‘stabilize’. During that time the LED may blink a little. Wait until the LED is off and then move around in front of it, waving a hand, etc, to see the LED light up!

Retriggering

There’s a couple options you may have with your PIR. First up we’ll explore the ‘Retriggering’ option.

Once you have the LED blinking, look on the back of the PIR sensor and make sure that the jumper is placed in the L position as shown below.

Now set up the testing board again. You may notice that when connecting up the PIR sensor as above, the LED does not stay on when moving in front of it but actually turns on and off every second or so. That is called “non-retriggering”.
Now change the jumper so that it is in the H position. If you set up the test, you will notice that now the LED does stay on the entire time that something is moving. That is called “retriggering”.

(The graphs above are from the BISS0001 datasheet, they kinda suck)

For most applications, “retriggering” (jumper in H position as shown below) mode is a little nicer.

If you need to connect the sensor to something edge-triggered, you’ll want to set it to “non-retriggering” (jumper in L position).

Changing sensitivity

The Adafruit PIR has a trimpot on the back for adjusting sensitivity. You can adjust this if your PIR is too sensitive or not sensitive enough – clockwise makes it more sensitive.

Changing Pulse Time and Timeout Length

There are two ‘timeouts’ associated with the PIR sensor. One is the “Tx” timeout: how long the LED is lit after it detects movement – this is easy to adjust on Adafruit PIR’s because there’s a potentiometer.

The second is the “Ti” timeout which is how long the LED is guaranteed to be off when there is no movement. This one is not easily changed but if you’re handy with a soldering iron it is within reason.First, lets take a look at the BISS datasheet again

On Adafruit PIR sensors, there’s a little trim potentiometer labeled TIME. This is a 1 Megaohm adjustable resistor which is added to a 10K series resistor. And C6 is 0.01uF so

Tx = 24576 x (10K + Rtime) x 0.01uF

If the Rtime potentiometer is turned all the way down counter-clockwise (to 0 ohms) then

Tx = 24576 x (10K) x 0.01uF = 2.5 seconds (approx)

If the Rtime potentiometer is turned all the way up clockwise to 1 Megaohm then

Tx = 24576 x (1010K) x 0.01uF = 250 seconds (approx)

If RTime is in the middle, that’d be about 120 seconds (two minutes) so you can tweak it as necessary. For example if you want motion from someone to turn on a fan for a minimum of 1 minute, set the Rtime potentiometer to about 1/4 the way around.

For older/other PIR sensors

If you have a PIR sensor from somewhere else that does not have a potentiometer adjust, you can trace out the adjustment resistors this way:

Determining R10 and R9 isnt too tough. Unfortunately this PIR sensor is mislabeled (it looks like they swapped R9 R17). You can trace the pins by looking at the BISS001 datasheet and figuring out what pins they are – R10 connects to pin 3 and R9 connects to pin 7. the capacitors are a little tougher to determine, but you can ‘reverse engineer’ them from timing the sensor and solving!

For example:

Tx is = 24576 * R10 * C6 = ~1.2 seconds
R10 = 4.7K and C6 = 10nF

Likewise,

Ti = 24 * R9 * C7 = ~1.2 seconds
R9 = 470K and C7 = 0.1uF

Using a PIR

Reading PIR Sensors

Connecting PIR sensors to a microcontroller is really simple. The PIR acts as a digital output so all you need to do is listen for the pin to flip high (detected) or low (not detected).Its likely that you’ll want reriggering, so be sure to put the jumper in the H position!

Power the PIR with 5V and connect ground to ground. Then connect the output to a digital pin. In this example we’ll use pin 2.

The code is very simple, and is basically just keeps track of whether the input to pin 2 is high or low. It also tracks the state of the pin, so that it prints out a message when motion has started and stopped.
  1. /*
  2. * PIR sensor tester
  3. */
  4. int ledPin = 13; // choose the pin for the LED
  5. int inputPin = 2; // choose the input pin (for PIR sensor)
  6. int pirState = LOW; // we start, assuming no motion detected
  7. int val = 0; // variable for reading the pin status
  8. void setup() {
  9. pinMode(ledPin, OUTPUT); // declare LED as output
  10. pinMode(inputPin, INPUT); // declare sensor as input
  11. Serial.begin(9600);
  12. }
  13. void loop(){
  14. val = digitalRead(inputPin); // read input value
  15. if (val == HIGH) { // check if the input is HIGH
  16. digitalWrite(ledPin, HIGH); // turn LED ON
  17. if (pirState == LOW) {
  18. // we have just turned on
  19. Serial.println(“Motion detected!”);
  20. // We only want to print on the output change, not state
  21. pirState = HIGH;
  22. }
  23. } else {
  24. digitalWrite(ledPin, LOW); // turn LED OFF
  25. if (pirState == HIGH){
  26. // we have just turned of
  27. Serial.println(“Motion ended!”);
  28. // We only want to print on the output change, not state
  29. pirState = LOW;
  30. }
  31. }
  32. }
Don’t forget that there are some times when you don’t need a microcontroller. A PIR sensor can be connected to a relay (perhaps with a transistor buffer) without a micro!
打赏

Leave a Reply